
F2016-VESF-002 

 
ENHANCING AUTOSAR SAFETY MECHANISMS FOR ISO 26262 

FUNCTIONAL SAFETY REQUIREMENTS 
 
Noh, Soonhyun; Kim, Myungsun; Hong, Seongsoo* 

Department of Electrical and Computer Engineering, Seoul National University, Republic of 

Korea 

 
KEYWORDS – ISO 26262, functional safety, ASIL, AUTOSAR, software fault detection  

 
ABSTRACT 

 

As the importance of functional safety in electric/electronic (E/E) systems increased in the 

modern automotive industry, a global functional safety standard named ISO 26262 was 

proposed. ISO 26262 provides functional safety requirements for each E/E system in order 

to avoid unreasonable risks. The AUTOSAR (AUTomotive Open System Architecture) has 

been actively introducing safety mechanisms to satisfy such requirements but it still falls 

short of expectation. Particularly, the current safety mechanisms of AUTOSAR cannot 

completely deal with software faults that must be detected according to ISO 26262. In this 

paper, we propose two enhanced safety mechanisms for AUTOSAR so that AUTOSAR can 

detect all types of software faults listed in ISO 26262. We first propose an enhanced 

deadline supervision mechanism to detect the indefinite blocking of a task. We also 

introduce an end-to-end protection mechanism that can detect the delayed transmission of 

data. We implemented our solution on TriCoreTM Starter Kit and demonstrated that the 

proposed solution successfully detected faults as desired. 

 

INTRODUCTION 

 

In the modern automotive industry, the importance of functional safety in electric/electronic 

(E/E) systems is increasing. To extensively address automotive functional safety issues, a 

global functional safety standard named ISO 26262 was proposed [1]. ISO 26262 is an 

adaptation of IEC 61508, a functional safety standard for general electrical/programmable 

electronic safety related systems, to the automotive domain. It provides for a structured 

approach to achieving safety goals while developing E/E systems. 

 

ISO 26262 offers a hazard analysis and risk assessment scheme that helps identify and 

categorize hazards caused by malfunctioning behaviors of E/E systems. As a result of 

applying the scheme, each E/E system can be assigned an ASIL (Automotive Safety 

Integrity Level) based on three factors: severity, probability of exposure and controllability. 

There are four ASILs: ASIL A, ASIL B, ASIL C and ASIL D. ASIL A has the lowest risk 

and ASIL D has the highest. Based on an assigned ASIL, each E/E system is assigned its 

own safety requirements for hardware and software development. These requirements should 

be satisfied while designing, implementing, verifying and validating the system. 

 

Software fault detection is one of the key safety requirements for the software development 

in ISO 26262. Accordingly, each E/E system must have safety mechanisms to detect 

software faults that might occur during execution. ISO 26262 defines software faults that 

must be detected via such safety mechanisms. There are three types of faults: (1) timing and 

execution faults, (2) memory faults and (3) exchange of information faults. In ISO 26262, 



E/E systems with ASIL C and ASIL D must have safety mechanisms to detect all the three 

types of faults. 

 

AUTOSAR (AUTomotive Open System Architecture) is an automotive software platform 

standard introduced by the European automotive industry in 2002 [2]. It provides software 

platform architecture, a design methodology, templates and APIs for automotive software 

developers. Since many automotive industries are involved in the developing process [3], it 

is important for AUTOSAR to provide platform-level safety mechanisms. AUTOSAR has 

been actively introducing safety mechanisms since its release 4.0.3, but it still fails to satisfy 

all the requirements of ISO 26262. 

 

Particularly, the current safety mechanisms of AUTOSAR are incapable of detecting all 

types of faults listed in ISO 26262. First, it fails to detect the indefinite blocking of a task at 

runtime. This prevents an AUTOSAR-based system from detecting some of the timing and 

execution faults. Second, it cannot detect delayed data transmission between two ECUs. This 

may conceal some of the exchange of information faults. 

 

In this paper, we introduce two advanced safety mechanisms for AUTOSAR in order to 

detect all three types of software faults listed in ISO 26262. We first propose to enhance a 

deadline supervision mechanism so that it can monitor program execution flows and check a 

deadline miss between two checkpoints on the program: start checkpoint and end checkpoint. 

Compared to the original deadline supervision mechanism of AUTOSAR, the proposed 

mechanism can detect deadline misses caused by task blocking before the task reaches its 

end checkpoint. To do so, it periodically checks how much time has passed since the start 

checkpoint and immediately returns an error when the deadline is violated. We also propose 

an end-to-end protection mechanism that can detect the delayed transmission of data. The 

proposed mechanism keeps computing the time difference between sent time and received 

time for every message reception to check delayed transmission. We implemented the 

proposed mechanisms on TriCoreTM Starter Kit and showed that our mechanisms 

successfully detected faults as desired. 

 

The remainder of this paper is organized as follows. In the next section, we give the 

background of the proposed work. We then state our problem to solve and give an overview 

of the proposed approach. We then explain the proposed solution mechanism in detail along 

with its implementation. Finally, we report on the experimental evaluation and conclude the 

paper. 

 

BACKGROUND 

 

To aid in understanding the rest of this paper, we explain the fault detection requirements of 

ISO 26262 and the safety mechanisms of AUTOSAR. 

 

Fault Detection Requirements of ISO 26262 

 

The software fault detection is one of the essential requirements that ISO 26262 mandates 

for software development. ISO 26262 clearly specifies software faults that might occur at 

runtime. Such faults are classified into three categories: (1) timing and execution faults, (2) 

memory faults and (3) exchange of information faults. The detailed classification is given in 

Table 1. 

 



In order to detect such software faults, ISO 26262 specifies necessary software safety 

mechanisms for E/E systems. They are (1) a range check of input and output data, (2) a 

plausibility check, (3) detection of data errors, (4) external monitoring facility, (5) control 

flow monitoring and (6) diverse software design. E/E systems with ASIL C or ASIL D must 

have all these safety mechanisms. Among them, mechanisms (1) to (5) must be used at 

runtime. In order to reduce the duplication of efforts in developing safety mechanisms, it is 

encouraged to provide these safety mechanisms at the platform level. 

  

AUTOSAR Safety Mechanisms 

 

AUTOSAR has been actively adopting safety mechanisms to satisfy functional safety 

requirements of ISO 26262. Starting from the release 4.0.3, AUTOSAR includes safety 

mechanisms such as program flow monitoring, end-to-end protection and memory 

partitioning in order to satisfy the fault detection requirements of ISO 26262. Software 

developers should use these safety mechanisms while developing software components. 

 

Program flow monitoring is a mechanism that checks the correct execution of software 

components. Program flow monitoring is conducted by a task named a watchdog manager. 

A watchdog manager is a basic software module that supervises the execution of a program. 

Its logical unit of supervision is called a supervised entity, which is a part of code of a 

software component. Each supervised entity has a set of checkpoints. There are three 

monitoring methods: (1) alive supervision, (2) deadline supervision, and (3) logical 

supervision. In alive supervision, the watchdog manager counts how many times the 

supervised entity reaches its checkpoint in a given period of time. If the count is less than the 

minimum threshold or larger than the maximum threshold, the watchdog manager returns an 

error. In deadline supervision, the watchdog manager measures the execution time between 

two checkpoints and returns an error when the execution time exceeds its threshold. In 

logical supervision, the watchdog manager monitors the execution order of checkpoints. It 

returns an error when the unsafe order is detected. 

 

Timing and execution fault Memory fault Exchange of information fault 

(a) Blocking of execution 

(b) Deadlocks 

(c) Livelocks 

(d) Incorrect allocation of 

 execution time 

(e) Incorrect synchronization 

 between software 

 component 

(a) Corruption of content 

(b) Read or write access to 

 memory allocated to 

 another software element 

 

(a) Repetition of information 

(b) Loss of information 

(c) Delay of information 

(d) Insertion of information 

(e) Masquerade or incorrect 

 addressing information 

(f) Incorrect sequence of 

     information 

(g) Corruption of information 

(h) Asymmetric information 

 sent form a sender to 

 multiple receivers 

(i) Information from a sender 

 received by only a subset of 

 the receivers  

(j) Blocking access to a 

 communication channel 
 

Table 1: Classification of the software faults in ISO 26262 



End-to-end (E2E) protection is a mechanism for protecting data against the effects of faults 

within the communication link. Before sending data from a sender to a receiver, the sender 

adds an E2E header to the data. The E2E header includes the safety-related information such 

as CRC (cyclic redundancy check) bits and a sequence counter. When a receiver gets the 

data, it checks, using the E/E header, whether sent data is correctly transmitted. Three 

methods can be used for such a safety check: (1) CRC, (2) data ID check and (3) sequence 

counter check. In CRC, the E2E protection wrapper compares the CRC checksum of the 

sender and the receiver to check whether the data is changed during the transmission [4]. In 

the data ID check, the E2E protection wrapper checks whether the data is sent from the 

correct sender or not. This is done by checking the data ID, which is an ID given to each port 

of a sender and a receiver. In the sequence counter check, a sequence counter is incremented 

at the sender on every transmission request, and its value is checked at the receiver. 

 

Memory partitioning is a mechanism that enables a software component to run in a separate 

memory partition so that it does not interfere with other software components. Several 

software components can be grouped together and placed into a separate memory region. As 

a result, a software component in one group cannot modify the memory contents of another 

software component in a different group. 

 

PROBLEM STATEMENT 

 

The current safety mechanisms of AUTOSAR are incapable of detecting all types of faults 

listed in ISO 26262. Specifically, AUTOSAR cannot detect blocking of execution or 

deadlocks, which leads to an instance of the timing and execution fault. In AUTOSAR, a 

watchdog manger is triggered when a supervised entity reaches a checkpoint. Thus, a 

watchdog timer cannot work properly when a program is blocked indefinitely between two 

checkpoints. Also, AUTOSAR is incapable of detecting the delay of information fault that is 

an instance of the exchange of information fault. AUTOSAR does not offer APIs to check 

the freshness of transmitted data. Table 2 shows which software faults are covered by the 

AUTOSAR safety mechanisms. 

 

The problems we address in this paper are as follows. (1) For given two checkpoints in a 

supervised entity, a safety mechanism should detect blocking of execution that occurs 

between two checkpoints, within a predetermined amount of time. (2) A safety mechanism 

should detect a transmission delay between a sender and a receiver whose size is larger than 

a given threshold. 

 

AUTOSAR 

safety 

mechanisms 

Software faults in ISO 26262 

Timing and 

execution fault 

Mem. 

fault 
Exchange of information fault 

a b c d e a B a b c d e f g h i j 
Program flow 

monitoring 
  √ √ √             

End-to-end 

protection 
       √ √  √ √ √ √ √ √ √ 

Memory 

protection 
     √ √           

 

Table 2: Relationship between AUTOSAR safety mechanisms and the software faults 



SAFETY MECHANISMS FOR ISO 26262 FUNCTIONAL SAFETY REQUIREMENTS 

 

In order to solve the problems stated above, we present two safety mechanisms for 

AUTOSAR: (1) a deadline supervision mechanism to detect blocking of execution within a 

predetermined amount of time and (2) an end-to-end protection mechanism that can detect 

the delayed transmission of data. 

 

The deadline supervision mechanism monitors program execution flows and detects a 

deadline miss between two checkpoints in a program. The two checkpoints are called a start 

checkpoint and an end checkpoint, respectively. When a supervised entity reaches a start 

checkpoint, the watchdog manager invokes a function named WdgM_ChckpointReached(). 

This function records the time when the start checkpoint is reached. Then, the watchdog 

manger periodically computes how much time has passed since the control passed the start 

checkpoint. When the computed time exceeds a given deadline, the watchdog manger 

returns an error. Then a user-defined callback function is called to handle the fault. 

 

In order to detect the delayed transmission of data, the end-to-end protection mechanism 

computes the time difference between sent time and received time. To do so, we modify the 

current E2E header of AUTOSAR. Specifically, we add two additional fields: sent time and 

delay threshold. A sender attaches an E/E header to the sending data and sends it to a 

receiver. When the receiver receives the data, it computes how much time has passed by 

subtracting the sent time stored in the header from the current time. It then compares the 

computed time with the threshold. An error is returned if the computed time is larger than 

the threshold. A user-defined callback function is invoked to handle the fault when an error 

occurs. 

 

 

EXPERIMENTAL EVALUATION 

 

We implemented our solution approach into AUTOSAR 3.1 on TriCoreTM Starter Kit. We 

performed a series of experiments on the target system. Its detailed hardware and software 

specification is given in Table 3. 

 

In one experiment, we created a software component in that a supervised entity was 

monitored by a watchdog manager. It had two checkpoints: a start checkpoint and an end 

checkpoint. We ran the supervised entity and blocked its execution between the start 

checkpoint and the end checkpoint. We then measured how much time the watchdog 

manager took for detecting such blocking. Our deadline supervision mechanism detected 

blocking of execution within a time limit. 

 

Hardware 

(TriCoreTM 

Starter Kit) 

MCU TC1797 (TriCoreTM v1.3.1 CPU 180MHz) 

Memory 4MB flash memory 

Communication 2 CAN, 2 FlexRay transceivers 

Software 

AUTOSAR Release 3.1 

SWC modeling SystemDesk 3.0 

ECU configuration EBtresos 10.0 

Downloader TASK VX-Toolset for Tricore v3.4r1 

 

Table 3: Target system description 



In the other experiment, we used two TriCoreTM Starter Kit boards. A sender software 

component was placed on one board and a receiver software component was placed on the 

other. While the sender software component transmitted data to the receiver software 

component, we delayed the transmission. We checked whether our end-to-end protection 

mechanism could detect the delayed transmission. It successfully detected all delayed 

transmissions. 

 

CONCLUSION 

 

In this paper, we proposed two safety mechanisms for AUTOSAR in order to detect all three 

types of software faults listed in ISO 26262. First, we introduced an enhanced deadline 

supervision mechanism that could detect the indefinite blocking of a task. It periodically 

monitors how much time has passed since the start checkpoint and immediately returns an 

error when the deadline is violated. Second, we proposed an end-to-end protection 

mechanism that could detect the delayed transmission of data. The time difference between 

sent time and received time is computed for every message reception and an error is returned 

when delayed transmission occurs. We implemented our solution on TriCoreTM Starter Kit 

and demonstrated that the proposed solution successfully detected faults as desired. 

 
REFERENCES 

 

[1] ISO 26262 Road Vehicles – Functional Safety, 2011. 

[2] Specifications of AUTOSAR Release 4.2, 2015. 

[3] Manish Kumar, Jonghun Yoo and Seongsoo Hong. Enhancing AUTOSAR Methodology 

to a COTS-based Development Process via Mapping to V-Model. IEEE Symposium on 

Industrial Embedded Systems. 2009. 

[4] W. W. Peterson and D. T. Brown. Cyclic Codes for Error Detection. Proceedings of the 

IRE. 1961. 


